assertEqualsWithDelta($expected, $evaluated, 0.00001); } /** * @return array (x, expected) */ public function dataProviderForPiecewiseForPolynomialAgrees(): array { return [ [0, 0], // p(0) = 0 [1, 5], // p(1) = 5 [3, 2], // p(3) = 2 [7, 10], // p(7) = 10 [10, -4], // p(10) = -4 ]; } /** * @test Solve zero error * @dataProvider dataProviderForSolve * @param float $x * @throws \Exception * * f(x) = 8x³ -13x² -92x + 96 * * The error in the Cubic Spline Interpolating Polynomial is proportional * to the max value of the 4th derivative. Thus, if our input Function * is a 3rd-degree polynomial, the fourth derivative will be zero, and * thus we will have zero error. * * p(x) agrees with f(x) at x = $_ */ public function testSolveZeroError($x) { // Given f(x) = 8x³ -13x² -92x + 96 $f = new Polynomial([8, -13, -92, 96]); // And $a = 0; $b = 10; $n = 50; $tol = 0; $roundoff = 0.0001; // round off error // And $p = NaturalCubicSpline::interpolate($f, $a, $b, $n); $expected = $f($x); // When $evaluated = $p($x); // Then $this->assertEqualsWithDelta($expected, $evaluated, $tol + $roundoff); } /** * @test Solve non-zero error * @dataProvider dataProviderForSolve * @param float $x * @throws \Exception * * f(x) = x⁴ + 8x³ -13x² -92x + 96 * * The error is bounded by: * |f(x)-p(x)| = tol <= (1/4!) * h⁴ * max f⁽⁴⁾(x) * where h = max hᵢ * * f'(x) = 4x³ +24x² -26x - 92 * f''(x) = 12x² - 48x - 26 * f'''(x) = 24x - 48 * f⁽⁴⁾(x) = 24 * * So, tol <= (1/24) * (1/5)⁴ * 24 = (1/5)⁴ * * p(x) agrees with f(x) at x = $_ */ public function testSolveNonZeroError($x) { // Given f(x) = x⁴ + 8x³ -13x² -92x + 96 $f = new Polynomial([1, 8, -13, -92, 96]); // And $a = 0; $b = 10; $n = 51; // And $tol = $tol = 0.2 ** 4; // So, tol <= (1/24) * (1/5)⁴ * 24 = (1/5)⁴ $roundoff = 0.000001; // round off error // And $p = NaturalCubicSpline::interpolate($f, $a, $b, $n); $expected = $f($x); // When $evaluated = $p($x); // Then $this->assertEqualsWithDelta($expected, $evaluated, $tol + $roundoff); } /** * @return array p(x) agrees with f(x) at x = $_ */ public function dataProviderForSolve(): array { return [ [0], [2], [4], [6], [8], [10], [7.32], // not a node ]; } }