123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183 |
- <?php
- namespace MathPHP\Tests\NumericalAnalysis\NumericalDifferentiation;
- use MathPHP\NumericalAnalysis\NumericalDifferentiation\ThreePointFormula;
- class ThreePointFormulaTest extends \PHPUnit\Framework\TestCase
- {
- /**
- * @test differentiate zero error using callback - Check that the endpoint/midpoint/backward endpoint formula agrees with f'(x) at x = $_
- * @dataProvider dataProviderForTestDifferentiateZeroError
- * @param int $x
- * @throws \Exception
- *
- * f(x) = 13x² -92x + 96
- * f’(x) = 26x - 92
- *
- * h²
- * Error term for the Midpoint Formula: - f⁽³⁾(ζ₁)
- * 6
- *
- * where ζ₁ lies between x₀ - h and x₀ + h
- *
- * h²
- * Error term for the Endpoint Formula: - f⁽³⁾(ζ₀)
- * 3
- *
- * where ζ₀ lies between x₀ and x₀ + 2h
- *
- * f'(x) = 26x - 92
- * f''(x) = 26
- * f⁽³⁾(x) = 0
- * Thus, our error is zero in both formulas for our function $f
- */
- public function testDifferentiateZeroError(int $x)
- {
- // Given f(x) = 13x² -92x + 96
- $f = function ($x) {
- return 13 * $x ** 2 - 92 * $x + 96;
- };
- // And f’(x) = 26x - 92
- $f’ = function ($x) {
- return 26 * $x - 92;
- };
- $expected = $f’($x);
- // And
- $n = 3;
- $a = 0;
- $b = 4;
- // When
- $actual = ThreePointFormula::differentiate($x, $f, $a, $b, $n);
- // Then
- $this->assertEquals($expected, $actual);
- }
- /**
- * @return array (x)
- */
- public function dataProviderForTestDifferentiateZeroError(): array
- {
- return [
- [0], // Check that the endpoint formula agrees with f'(x) at x = 0
- [2], // Check that the midpoint formula agrees with f'(x) at x = 2
- [4], // Check that the (backward) endpoint formula agrees with f'(x) at x = 4
- ];
- }
- /**
- * @test differentiate non-zero error using callback - Check that the endpoint/midpoint/backward endpoint formula agrees with f'(x) at x = $_
- * @dataProvider dataProviderForTestDifferentiateNonZeroError
- * @param int $x
- * @param int $tol
- * @throws \Exception
- *
- * f(x) = x³ - 13x² -92x + 96
- * f'(x) = 3x² - 26x - 92
- *
- * h²
- * Error term for the Midpoint Formula: - f⁽³⁾(ζ₁)
- * 6
- *
- * where ζ₁ lies between x₀ - h and x₀ + h
- *
- * h²
- * Error term for the Endpoint Formula: - f⁽³⁾(ζ₀)
- * 3
- *
- * where ζ₀ lies between x₀ and x₀ + 2h
- *
- * f(x) = x³ - 13x² -92x + 96
- * f'(x) = 3x² - 26x - 92
- * f⁽³⁾(x) = 6
- * Error in Midpoint Formula on [0,2] (where h=1) < 1
- * Error in Endpoint Formula on [0,2] (where h=1) < 2
- */
- public function testDifferentiateNonZeroError(int $x, int $tol)
- {
- // Given f(x) = x³ - 13x² -92x + 96
- $f = function ($x) {
- return $x ** 3 - 13 * $x ** 2 - 92 * $x + 96;
- };
- // And
- $f’ = function ($x) {
- return 3 * $x ** 2 - 26 * $x - 92;
- };
- $expected = $f’($x);
- // And
- $n = 3;
- $a = 0;
- $b = 2;
- // When
- $actual = ThreePointFormula::differentiate($x, $f, $a, $b, $n);
- // Then
- $this->assertEqualsWithDelta($expected, $actual, $tol);
- }
- /**
- * @return array (x, tol)
- */
- public function dataProviderForTestDifferentiateNonZeroError(): array
- {
- return [
- [0, 2],
- [1, 1],
- [2, 2],
- ];
- }
- /**
- * @test differentiate zero error using array of points - Check that the endpoint/midpoint/backward endpoint formula agrees with f'(x) at x = $_
- * @dataProvider dataProviderForTestDifferentiateZeroError
- * @param int $x
- * @throws \Exception
- *
- * f(x) = 13x² -92x + 96
- * f’(x) = 26x - 92
- *
- * h²
- * Error term for the Midpoint Formula: - f⁽³⁾(ζ₁)
- * 6
- *
- * where ζ₁ lies between x₀ - h and x₀ + h
- *
- * h²
- * Error term for the Endpoint Formula: - f⁽³⁾(ζ₀)
- * 3
- *
- * where ζ₀ lies between x₀ and x₀ + 2h
- *
- * f'(x) = 26x - 92
- * f''(x) = 26
- * f⁽³⁾(x) = 0
- * Thus, our error is zero in both formulas for our function $f
- */
- public function testDifferentiateZeroErrorUsingPoints(int $x)
- {
- // Given f(x) = 13x² -92x + 96
- $f = function ($x) {
- return 13 * $x ** 2 - 92 * $x + 96;
- };
- $points = [[0, $f(0)], [2, $f(2)], [4, $f(4)]];
- // And f’(x) = 26x - 92
- $f’ = function ($x) {
- return 26 * $x - 92;
- };
- $expected = $f’($x);
- // When
- $actual = ThreePointFormula::differentiate($x, $points);
- // Then
- $this->assertEquals($expected, $actual);
- }
- }
|